Modeling and Simulation of Stochastic Inverse Problems in Viscoplasticity
نویسندگان
چکیده
منابع مشابه
Quasistatic problems in viscoplasticity theory
We study the existence theory to quasistatic initial-boundary value problems with internal variables, which model the viscoelastic or viscoplastic behavior of solids at small strain. In these problems a system of linear partial differential equations coupled with a nonlinear system of differential equations or differential inclusions must be solved. The solution theory is based on monotonicity ...
متن کاملsimulation and experimental studies for prediction mineral scale formation in oil field during mixing of injection and formation water
abstract: mineral scaling in oil and gas production equipment is one of the most important problem that occurs while water injection and it has been recognized to be a major operational problem. the incompatibility between injected and formation waters may result in inorganic scale precipitation in the equipment and reservoir and then reduction of oil production rate and water injection rate. ...
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Inverse problems in dynamic cognitive modeling.
Inverse problems for dynamical system models of cognitive processes comprise the determination of synaptic weight matrices or kernel functions for neural networks or neural/dynamic field models, respectively. We introduce dynamic cognitive modeling as a three tier top-down approach where cognitive processes are first described as algorithms that operate on complex symbolic data structures. Seco...
متن کاملStochastic model reduction applied to inverse problems
This article describes the use of Gaussian Processes in model reduction techniques with application to inverse problems. Mainly, the work is focused on the proper construction of the model approximation, namely on training process based on minimal number of learning samples, by making use of automatic samples selection through computed standard deviation of model prediction. An example of appli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Indian Institute of Metals
سال: 2019
ISSN: 0972-2815,0975-1645
DOI: 10.1007/s12666-019-01757-2